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In parachute research, the canopy inflation process is the least understood and the mest complex to
model. Unfortunately it is during the opening process that the canopy often experiences the largest
deformations and loadings. The complexity of modeling the opening process stems from the coupling
between the structural dynamics of the canopy, lines, and payload with the aerodynamics of the sur-
rounding fluld medium. The addition of a computational capability to model the coupled apening behavior
would greatly assist in the understanding of the canopy inflation process. This article describes research
that involves coupling a computational fluid dynamics code to a mass spring damper parachute structural
code. The axisymmetric codes are coupled with an explicit marching method. The current model is
described and results for a round parachute are presented. A comparison of the numerical results to
experimental data will be presented. The successful solution of these problems gives us confidence that
the computational aercelastic problem for parachute openings can be solved. This solution allows moving
the parachute design process from one of cut and try to one based on experimentally verified computa-

tional tools and reduces the reliance on costly and time-consuming testing during development.

Nomenclature

CALAx = X direction force contribution from canopy loads
analysis logic

CALAy = Y direction force contribution from canopy loads
analysis logic

Cm; = meridional damping constant

Cny = normal damping constant

DX, = X direction force contribution from normal line
drag

DY, = Y direction force contribution from normal line
drag

F1 = normal force contribution

F2, F3 = angential force contribution

F4 = gravitational force contribution

g = gravitational constant

km, = meridional spring constant

P, @ = C-grid forcing functions

m; = mass associated with node {

n = total number of nodes on canopy

nl = total number of nodes on line

t = time

x = radial computational fluid dynamics grid
coordinate

x(i) = current x location of node i

¥ = axial computational fluid dynamics grid
coordinate

¥(i) = current y location of node i

o = angle defining normal direction of node i

Bi = angle defining relative angle between nodes
jandi + 1

Al = positive amount of stretch between nodes
iandi + 1

n = computational domain coordinate

¢ = computational domain coordinate

i = gore bulge angle
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Introduction

HE time-variant aerodynamic characteristics associated

with the opening of a parachute are extremely complex
to model. The complexity arises largely from the fact that the
flowfield is dependent on the canopy shape, which is itself
dependent on the flowfield. A correct model must include the
coupled behavior of the parachute system’s structural dynam-
ics with the aerodynamics of the surrounding flowfield. A cou-
pled model not only will provide information about the open-
ing characteristics of a parachute, but also will provide
characteristics of the parachute in its terminal velocity state,
including the parachute’s shape, drag, velocity, pressure dis-
tribution, and flowfield characteristics.

The aerodynamic or the structural dynamic behavior of the
parachute opening problem cannot be studied independently
{decoupled) with accuracy. The logic required in coupling a
computational fluid dynamic (CFD) code to a structural dy-
namic code was established in stages of increasing complexity.
The model described in this report is axisymmetric and has
evolved from previous efforts.”” The present model involves
coupling the CFD code to a mass spring damper {MSD) struc-
tural dynamic code to represent a flat, circular solid cloth para-
chute. A half-scale C-9 canopy dropped from rest is modeled
and the computational results will be compared with experi-
mental results.

CFD Model

The simplified arbitrary Lagrangian—Eulerian (SALE)
Navier—Stokes code, written at Los Alamos National Labo-
ratories, has been adapted to model parachute problems.’
SALE uses a finite difference algorithm to solve the time-de-
pendent, two-dimensional, Navier-Stokes equations (incom-
pressible or compressible) in Cartesian or axisymmetric coor-
dinates. Axisymmetric coordinates are used for parachute
applications.

SALE defines velocities at cell vertices in the computational
grid, whereas pressures are defined at cell centers. SALE uses
the arbitrary Lagrangian—Eulerian (ALE) algorithm, which al-
lows the use of nonuniform computational grids that can de-
form with time, The computational domain is discretized with
a single block grid consisting of quadrilateral cells. The re-
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ning capabilitics of SALE are valuable for solving flows
out decelerators in motion or for inflation problems.
Parachute inflation problems have been addressed utilizing
elliptic C-grid mesh update strategy. Much effort has been
evoted to elliptic grid generation and some of the developed
pchniques and strategies have been incorporated into the axi-
rmmetric parachute model. A C-grid takes a single block grid
ja the computational domain and maps one of its outer bound-
fies around the surface of a body in the physical domain. In
case of the current application, one boundary wraps around
parachute cross section (see Fig. 1). The two boundaries
border the surface boundary in the computational domain
Jmap onto the symmetry axis above and below the parachute
rface boundary in the physical domain. The final boundary
8 the computational domain correspends to the outer bound-
wry in the physical domain.
The elliptic grid is generated by solving a form of the Pois-

Won cquation. A general form of Poisson’s equation is shown

Fin Egs. (1) and (2):

fu T & =P ) oy

N + My =0 M) (2)

| where P and @ are forcing functions that result in desired grid
E coordinate control,

MSD Model

The parachute consisting of canopy, lines, and payload is
modeled as a series of lumped mass points (nodes) connected

f by springs and dampers as shown in Fig. 2. The MSD model
E fits into the coupled code as a set of Fortran subroutines. The
} MSD subroutines require a pressure distribution along the me-
' ridional length of the canopy and a time step as input. The

MSD program returns the position and velocity of each MSD
canopy node and the payload node to the CFD program at the
requested time.

The MSD model is axisymmetric but includes some three-

t dimensional considerations, The current model has been used
f to approximate flat, circular, solid cloth canopies, such as a C-

9. The MSD governing equations are obtained by applying
Newton’s second law at each user-defined node to obtain a set

i of coupled nenlinear differential equations. A typical interior
' node on the canopy surface experiences four major force con-

tributions. These forces include a normal contribution, two me-
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Fig. 1 C-grid computational and physical domains.
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Fig. 3 Free body diagram.

ridional spring and damper contributions, and a gravitational
contribution. The gravitational force is the product of the grav-
itational acceleration constant and the mass of the node. A free
body diagram of a typical interior node on the canopy surface
is shown in Fig. 3. The MSD code is limited to axisymmetric
problems.
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The normal force contribution is principally because of the
aerodynamic differential pressure acting across the canopy sur-
face. The current model converts the pressure loading to lo-
calized forces at each node by using an approximation of the
logic contained in the canopy loads analysis (CALA) code
theory.* The CALA code is a static code only and predicts the
steady-state shape of a parachute system, but requires a steady-
state pressure distribution along a radial (meridional arc
length) as input.

The pressure distribution across the surface of the canopy is
supplied by the CFD code at the MSD nodes. The MSD code
utilizes the basic CALA assumptions to transform the pressure
distribution into nodal forces tangential and normal to the ra-
dial position. The MSD nodes are located along a radial and
the mass associated with each are lumped values based on the
constructed shape of the canopy gores. The CALA code as-
sumes that the horizontal members of a gore form sections of
circular arcs and that the pressure distribution is uniform along
the horizontal members. The horizontal members lie in planes
that are defined by the current unit normal vectors from two
adjacent radials making up one gore. The CALA code* defines
the static force per unit radial length applied to a radial loca-
tion. The value of the normal and tangential forces per unit
length is given in the CALA reference. These force equations
include the variable . The variable i is used to define the
circular arc section at each node point. This angle ¢ is de-
termined iteratively using Newton’s method at each node for
each current surface configuration based on the constructed
gore shape at each time step. The forces include approxima-
tions of the hoop force contribution based on the gore geom-
etry. The CALA logic has many assumptions that need to be
addressed. These include the assumed gore shape, the orien-
tation of the normal to the canopy surface, singularities with
small gore bulge angles, the snap-through phenomena (which
occur when the pressure distribution changes sign), and gore-
on-gore contact regions, especially during the initial stages of
the opening.

The normal force on a typical canopy node also includes a
variable viscous normal damping contribution. This damping
is applied to the node based on the normal velocity of each
canopy node relative to the payload velocity. The normal
damping is included primarily to maintain numerical stability
of the overall solution. The dampers are not attempting to
model any physically observable phenomenon. The value used
for the normal damping constant can have a major impact on
the solution.”

The tangential force contribution to each node is the sum of
the forces from the meridional springs and dampers connecting
each node to its nearest neighbor. The spring force is the prod-
uct of the spring constant and the change in length between
nodes. The spring force acts only when the distance between
the nodes is greater than the constructed distance because can-
opy fabric cannot support compressive forces. The tangential
damping force opposes the relative velocity between neigh-
boring nodes. The force is the product of the damping constant
and the relalive change in velocity between (wo adjacent
nodes. These dampers are included to damp out the high nat-
ural frequencies in the meridional springs. These natural fre-
quencies may cause flow instabilities in connection with the
no-slip boundary conditions at the canopy surface.

The canopy and suspension lines are modeled with a user-
defined number of nodes n and nl, respectively. The payload
is defined with one node. The total number of nodes is equal
to (n + nl + 1). The equations of motion for all canopy and
line nodes have two degrees of freedom and are defined in the
global X, ¥ coordinate system. The payload has only one de-
gree of freedom in the global ¥ direction. Therefore, the MSD
model is solving (2n + 2nl + 1) second-order nonlinear or-
dinary differential equations (ODEs).

The equations of mation for interior canopy nodes (nodes 2
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_through n — 1) are described in this section. The acceleration
in the x direction of canopy node i is given in Eq. (3):

(@) 1
¥ m CALAx + kmAl cos B;

L

d(al)
de

- km;_xAl,-_l cos ﬁi—l + CMf cOos ﬁ,-

diAl-,) dx(i) .
A cos iy Cn,-{ ar sin a;

dy(@) _ dy(payload) .
+ [ ar ” ] cos a,-} sin a;) (3)

mi—y

The acceleration in the y direction of canopy node i is given
in Eq. (4):

O _ L (caLAy — kmAl si
& Tm y — kmAl; sin 8,

d(Al)

+ km,_Al_, sin B, — Cmy W

sin ﬁ,‘

d(Al;_
Cm,y _(_dt_ll sin a;

dr

dy() _ dy(payload) _
+ [ s 9 ] Cos a,} cos a,-) g @)

sin B, — Cm; {dx(')

Next, equations for a typical interior line node are given.
These include line nodes no. 2 through no. nf — L The ac-
celeration in the x direction of line node i is given in Eq. (5¥

dx(i 1
;(:) = [km,-Al,- cos B; — km_Ali_y cos By
d(Al d(Al_p
m; ar ) cos B; — Cmyy ar L cos By, — DX,

(5)

The acceleration in the y direction of line node i is given in

Eq. (6):

3egs
d—y(—jl -+ [—km,m,. sin B; + km..Al_, sin By
dt m;
A Aliy)
- m.-d( 2 Gin B+ Cm,-_ld( be) gin B —DYi|— 2
d de
©)

These governing equations representing the canopy, lines,
and payload are reformulated into a set of first-order ODEs
that are nonlinear in space and first order in time. The ODEs
are solved over the desired time step with initial conditions by
utilizing the Sandia, Los Alamos, Air Force Weapons Labo-
ratory Technical Exchange Committee (SLATEC) ODE solver
DDEBDEF and associated subroutines.® For more detail on the
individual terms in Egs. (3—6) see Ref. 2.

The initia! conditions required to solve the governing ODEs
are to prescribe the initial position and velocity of every node
in the MSD model. Initial shapes were constructed by defining
an angle from the axis of symmetry 10 the parachute suspen-
sion line (always assumed to be initially straight) and gener-
ating a conical base with a spherical section top where the
total arc length is given by the constructed geometry. The ini-
tial velocities of all nodes must also be specified to gencrate
a solution. The simplest case is to set all velocities equal to
zero. Different initial conditions must be employed to model
more accurately other types of real parachute openings.
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Coupling

The coupling approach in the parachute model is explicit in
time. The CFD code is used as the main Fortran program,
which calls the structural code subroutines. The coupled model
starts the computations with the flow medium and structural
components at rest. During each time step in the coupled run
the CFD and structural dynamic computations are advanced
one time step.

For ¢ach CFD time step, three tasks must be performed.
First, the C-grid canopy surface is redefined each time step to
correspond to the current structural shape. At each time step,
the structural code returns updated positions and velocities for
canopy nodes to the CFD code. These positions are used to
update the canopy surface in the C-grid. The new CFD surface
nodes are determined by interpolation from the structural sur-
face nodes using Lagrange polynomials. The surface is then
given a thickness normal to the interpolated positions, Sec-
ondly, the elliptic grid is updated based on the updated canopy
surface representation. The elliptic grid is defined by reposi-
tioning the surface boundary, repositioning the outer boundary,
and then updating interior nodes and nodes along the sym-
metry axis. The outer boundary moves each time step with the
parachute payload. Interior grid nodes are updated with Pois-
son’s equation and the same set of clustering coefficients that
were used to generate the initial C-grid. The C-grid for the
previous time step is used as the initial guess for the updated
C-grid generation. Finally, appropriate boundary conditions are
defined. Boundary conditions on the canopy surface are de-
fined to represent a no-slip, nonporous surface. The outer
boundary is assumed to be the far field and velocity compo-
nents are defined as zero (# = v = 0} at the outer boundaries.
The symmetry axis is given a freeslip boundary by setting the
normal component of velocity u to zero on the symmetry axis.
After the grid is updated and boundary conditions are specified
as described previously, the CFD solution is advanced one time
step.

For each MSD time step, two tasks must be performed. First,
the differential pressure distribution for the canopy surface is
determined from the CFD solution. Since SALE computes
pressures at cell centers, nodal pressure values along the can-
opy surface are defined as the average of the pressures in the
two surrcunding cells. Pressures on the axis of symmetry
nodes are defined as the pressure in the adjacent corner cell.
Lower and upper surface pressures are subtracted to get the
differential pressure distribution for the meridional distribution
of CFED surface nodes. The CFD pressure distribution is inter-
polated to the structural surface node distribution, Using the
distribution of nodes in the structural representation, the pres-
sures are determined by interpolation from the CFD distribu-
tion of nodes using Lagrange polynomials. Finally, the struc-
tural model uses the CFD pressure distribution to advance the
structural solution one time step and updated positions are
once again returned to the CFD code. The C-grid is then up-
dated, boundary conditions are defined, and the process con-
tinues,

Results

The coupled computer model was tested by modeling a va-
riety of axisymmetric canopies that either are used by the U.S.
Army for personnel/cargo or are scaled versions of common
parachutes being used in experiments.” Results from one sim-
ulation will be presented and the mumerical results compared
to experimental results.

The coupled numerical model simulates a half-scale C-9
solid cloth canopy (14-ft constructed diameter), which is
dropped from rest. The parachute system is hanging from a
ceiling with a release mechanism attached to the apex. The
canopy hangs from the apex, the lines hang from the skirt and
the payload is hanging from the bottom of the lines. The apex

connection is released at time equal to 0 s.

The simulation was run with material properties that are
crude approximations of the experimental model (see Ref. 2
for more details on properties used to model this canopy). The
CFD grid size is 70 by 60 cells. The number of nodes on the
canopy and lines are 25 and 15, respectively. The nunbers
used were chosen by experience with consideration given to
obtaining results in an acceptable period of time. The payload
weight is 42.5 ib. The unstretched line length is 12 ft and the
C-9 canopy is constructed from 28 gores. The simulation was
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mn on a Kubota Titan 3000 minisupercomputer (U.S. Army
supercomputers have also been utilized). The time step for
the run was 3 X 107% s, determined by experience with the
coupled codes to maintain numerical stability throughout the
computation. The coupled codes have not been optimized for
performance. Optimization and programming for specific
high-speed machine capabilities will be addressed for the next-
generation coupled codes.

The origin is user defined and was chosen for this run to
coincide with the initial location of the payload node point.
Figure 4a shows a sequence of canopy shapes from a fixed
payload reference for equally spaced time steps from the initial
unstretched shape at time equal to 0.0 s up to time equal to
1.0 s. Figures 4b and 4c are a continuation of Fig. 4a for times
from 1.0 to 2.0 s and 2.0 to 3.0 s, respectively. These shapes
show some of the first-order characteristics that are typical
with this type of parachute opening. These include the initial
ball of air filling the apex of the canopy and then inflating the
canopy from apex to skirt. The model also predicts a phenom-
enon known as wake recontact. Wake recontact can occur in
finite mass openings during or soon after the payload has un-
dergone maximum deceleration. The wake trailing the opening
canopy is moving close to the speed of the payload. As a
result, when the payload undergoes its maximum deceleration,
the wake contacts the apex of the canopy. The recontacting
wake results in a negative differential pressure that indents the
apex of the canopy. This phenomena can be seen in Fig. 4b.

The predicted payload position and velocity curves as func-
tions of time are shown in Figs. 5 and 6, respectively. The
payload reaches a maximum descent rate just prior to the first
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full opening of the parachute canopy. The payload then stead-
ies out and approaches a terminal descent rate around 18 ft/s.
Figure 7 plots the numerically predicted payload force vs time
curve and two payload force vs time curves from the experi-
ments. The force vs time curves are very close considering the
approximations used in the model. The difference between the
numerical and experimental results from the start of the sim-
ulation up to approximately 0.7 s is because of the represen-
tation of the initial shape of the canopy in the coupled model
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Fig. 7 Payload force vs time (numerical and experimental).
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that has a larger initial volume than the experimental canopies.

E The numerical curve predicts the approximate time and mag-
mtude of the peak opening force and experiences a second
| peak force just after 2 s. The second peak in the force curve
[ §s because of a breathing of the parachute canopy that is ob-
_served in the experiments. Also note that the normal canopy
| damping input value has a strong effect on the peak force

value. The larger the damping constant the lower the numer-
jeally predicted peak force. The numerical model does predict

the time at which the peak opening force will occur.

2r
20}
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16%_ . __ 3
141 r

12

g 8 € 4 2 0

The numerical model can also be used to investigate added
mass effects during parachute opening. As an" example, the
included mass (defined as the mass of air confined to the in-
terior volume contained by the parachute canopy) for incom-
pressible flow can be calculated as the fluid density times the
contained volume. Figure & shows the included mass vs time
for the computation. Previous theories for parachute inflation
have related the canopy filling time to the mass of air swept
out by the canopy.® Figure & also shows this mass of air swept
out by the canopy skirt that continues to grow in time. This
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Fig. 10 CFD pressure distributions and velocity vectors during opening: a) 0.4, b) 0.8, ¢} 1.2, d} 1.6, e) 2.0, and f} 2.4 5.
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involves the coupling of a CFD code and a structural dynamics
code. The solution to the coupled problem is expected to assist
in the development of future U.S. Army airdrop systems,
which include the capability of deploying at low altitudes and
high speeds. The capability of accurately predicting the be-
havior of parachute systems will significantly reduce the
amount of testing currently required. Initial computational re-
sults with the model described in this article compare favora-
bly with experimental data. However, the current model will
require significant improvements and enhancements before it
can be considered usable as a design aid. Future computational
models are expected to provide significant insight about the
behavior of parachutes during the opening process.

mass is defined as the density of air times the volume that the
parachute mouth encircles during descent. In reality, some air
below the mouth escapes around the canopy as the canopy
passes by. However, Fig. 8 indicates that during most of the
opening the theory is acceptable, but after 1 s the two curves
begin to diverge. Figure 9 shows the time derivatives of the
curves shown in Fig. 8. As expected, the included mass ap-
proaches a constant value as the canopy reaches terminal de-
scent, and therefore, the rate of change of the swept out mass
approaches a nonzero value equal to the steady-state velocity
times the steady-state skirt area times the density of air.

The pressure distributions and velocity vectors surrounding
the canopy are shown in Figs. 10a—10f for six different time
snapshots during the simulation. The pressure contour lines are
shown on the left-hand side of each figure. The pressure range
between contour lines in these figures is 0.1 psf. An arrow is

References

drawn through the ambient pressure contour (dashed lines) in-
dicating the direction of increasing pressure. The right-hand
side of these figures shows the velocity vectors, The velocity
vectors are scaled equally for each snapshot to provide infor-
mation on the time-dependent velocity field in a consistent

manner.

Concluasions
The complexity of modeling the opening process stems from
the coupling between the structural dynamics of the canopy,
lines plus payload, and the aerodynamics of the surrounding

fluid medium.

This article describes ongoing research at the U.S. Army
Natick Research, Development, and Engincering Center, which

Rotary Wing

Intended for use in graduate level courses and by prac-
ticing engineers, the volume covers all of the important
topics needed for the complete understanding of rotorcraft
structural dynamics and aeroelasticity, including: basic
analysis tools, rotating beams, gyroscopic phenomena,
drive system dynamics, fuselage vibrations, methods for

Place your order today! Call 1-804/682-AIAA

@AIAA,

American 1 of Aer tics and Astr tics

FAX 301/843-0159 Phone 1-800/682-2422 8 a.m. - 5 p.m. £astern

Publications Customer Service, 9 fay Gould Ct., P.O. Box 753, Waldorf, MD 20604

'Stein, K. R., Benney, R. J.,, and Steeves, E. C., "*A Computational
Model that Couples Aerodynamic and Structural Dynamic Behavior
of Parachutes During the Opening Process,”” NATICK/TR-93/029,
April 1993.

gtein, K. R., and Benney, R. I, ‘‘Parachute Inflation: A Problem
in Aeroelasticity,’’ NATICK/TR-94/015, Aug. 1994.

3Amsden, A. A., Ruppel, H. M,, and Hirt, C. W, “‘SALE: A Sim-
plified ALE Computer Program for Fluid Flow at All Speeds,” Los
Alamos National Lab. TR, LA-8095, 1980.

“Sundberg, W. D., *‘New Solution Method for Steady-State Canopy
Structutal Loads,” Jowrnal of Aircraft, Vol. 25, No. 11, 1988, pp.
1045-1051,

*<SLATEC Library, FORTRAN Mathematical Subprograms,” Na-
tional Energy Software Center,

*French, K. E., “‘Inflation of a Parachute,”” AJAA Journal, Vol. 1,
No. 11, 1963, pp. 2615-2617.

Structural Dynamics and Aeroelasticity

Richard L. Bielawa

This new text presents a comprehensive account of the
fundamental concepts of structural dynamics and

. aeroelasticity for conventional rotary wing aircraft as wetl
as for the newly emerging tilt-rotor and tilt-wing concepts.

controlling vibrations, dynamic test procedures, stabil-
ity analysis, mechanical and aeromechanical instabili-
ties of rotors and rotor-pylon assemblies, unsteady
acrodynamics and flutter of rotors, and model testing.
The text is further enhanced by the inclusion of prob-
lems in each chapter.

AlAA Education Series
1992, 584 pp, illus, ISBN 1-56347-031-4
AlAA Members $54.95 Nonmembers $75.95
Order #: 31-4(830)

Sales Tax: CA residents, 5.25%; D, 6%. For shipping and handling add $4.75 for 1-4 books (call
for rates for higher quarttities}. Orders under $100.00 must be prepaid. Foreign orders must be
prepaid and include a $25.00 postal surcharge. Please allow 4 weeks for delivery. Prices are
subject e change without notice. Returns will be accepted within 30 days. Non-1.5. residents
are responsible for payment of any taxes required by their government.




